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Abstract. Fluctuations of general one-particle observables, such as density, momentum,
angular momentum and position, etc, are studied and their distribution functions are explicitly
obtained for all non-zero temperatures. The normalization exponent for the fluctuation operators
is explicitly obtained for the three distinct phases of the ideal Bose gas: normal, critical and
condensed.

1. Introduction

The history of the ideal Bose gas goes back to 1924, when Bose [1] obtained a microscopic
derivation of the blackbody radiation law based on quantum statistical mechanics. Since
then the ideal Bose gas has served as a simple, exactly solvable model for testing statistical
mechanics as a theory of collective phenomena, such as the superfluid phase transition, and
fundamental features such as the quantum equipartition law, the equivalence of ensembles,
etc. Despite the simplicity of the model, deriving exact results for the ideal Bose gas is
not always trivial. The first mathematically rigorous results were on the thermodynamic
limit, see [2] and references therein. A detailed analysis of the model, including the explicit
expression for the infinite-volume equilibrium states, the phase transition it undergoes, etc,
was performed in [3].

In this paper we are interested in fluctuations of one-particle observables. The
fluctuations are defined as the mathematical objects given by the infinite-volume limit of
expressions of the form

Fδ(A)3 = 1

|3| 1
2 +δ

∫
3

dx [A(x) − 〈A(x)〉] (1.1)

whereA(x) is any local observable at positionx ∈ R3, and 〈·〉 is the thermal expectation
value for the state in the thermodynamic limit and|3| denotes the volume of the bounded
domain3 ⊂ R3. The infinite-volume limit in the above expression is taken in the sense of
the non-commutative central limit theorem [4]. The problem is for every observableA to
find the proper choice of the exponentδ so that the limit

lim
3↑R3

〈exp iλFδ(A)3〉 (1.2)
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exists for sufficiently smallλ ∈ R and is non-degenerate. Then, ifδ = 0 one says thatA(x)

hasnormal fluctuations; if δ 6= 0 one says thatA(x) hasabnormal fluctuations. Following
the general theory [4], we define the fluctuation operatorFδ(A) by its characteristic function
(1.2) and write

Fδ(A) = lim
3↑R3

Fδ(A)3. (1.3)

It has been proved [4, 13] that the limits (1.3), for eachA in some suitably chosen set, form
an algebra of fluctuation operators given by a representation of the algebra of canonical
commutation relations (CCR), or more generally, a Lie algebra of fluctuation operators.

In the case whenA is a linear combination of Bose creation and annihilation operators
a#(x) of the free Bose gas the above programme has already been worked out in [5].

In this paper we concentrate on fluctuations of one-particle observables, such as the
densityn(x) = a+(x)a(x), the momentump(x) = − 1

2i[(∇a+(x))a(x) − a+(x)(∇a(x))],
the angular momentum, etc (see section 2). In the literature one finds already a number of
results on fluctuations of this type in the ideal Bose gas. First, in the work by Wreszinski [6]
the total density fluctuations are computed in the normal phase. Ziffet al [7] computed in
the canonical ensemble the fluctuations of the occupation number of the lowest energy level,
in the special case when3 is a rectangular box. They obtainedδ = 1

6 for densitiesρ larger
than the critical densityρc of the Bose–Einstein condensation. This result was generalized
to arbitrary domains by Buffet and Pulé [8]. Nachtergaele [9] computed the fluctuations of
the total angular momentum for an interacting boson system at high temperatures, in which
caseδ = 1

3. The fluctuations of the one-particle angular momentum for the ideal Bose gas
in a rotating bucket [10] were obtained in [11]. Furthermore, Fanneset al [12] studied the
fluctuations of the total momentum for a system of interacting bosons in high-temperature,
clustering equilibrium states and found that they are normal, i.e.δ = 0. In the same work,
the fluctuations of the total mean position (the centre of mass) were proved to be abnormal,
with δ = 1

3. The limit fluctuation operators turned out to be commuting with each other
and actually independent Gaussian random variables.

Here we consider the fluctuations of a general class of one-particle local observables,
including all the particular cases treated in the above cited papers in the ideal Bose gas at
arbitrary densities,ρ < ρc, ρ = ρc andρ > ρc. Explicitly, we consider the fluctuations of
all self-adjoint operators which are the second quantized form of the operatorsxτpσ on the
one-particle space. Herexτ is any monomial in the components of the position operator
x ∈ R3,

xτ =
3∏

j=1

(xj )τ
j

with τ ∈ N3 |τ | =
3∑

j=1

τ j > 0 (1.4)

and

pσ =
3∏

j=1

(
−i

∂

∂xj

)σ j

with σ ∈ N3 |σ | =
3∑

j=1

σ j > 0 (1.5)

is an arbitrary monomial in the components of the momentum operator. For notational
convenience, we put ¯h = m = 1; N is the set of natural numbers, including zero.

One of our main results is given by the following table of exponentsδ:

If ρ < ρc or σ 6= 0, thenδ = 1
3|τ |

If ρ = ρc andσ = 0, thenδ = 1
6 + 1

3|τ |
If ρ > ρc andσ = 0, thenδ = 1

3 + 1
3|τ |.
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It is clear that the indexδ increases with increasing density.
Note that the cases considered in [6, 9, 11, 12] are included in the above table. The

results of [7] and [8] for the canonical ensemble do not fit within our scheme because they
pertain to a different type of observables: the occupation number of the lowest energy level
cannot be written as a one-particle operator of the type considered here, but is related to
the field fluctuations (see [5]).

Moreover, we compute the distribution function (1.2) of the one-particle fluctuations. It
turns out that all the fluctuation operators behave as an algebra of classical observables at
non-zero temperatures. This can be seen from the above table of exponentsδ in combination
with the results of [13]. An example of such a classical behaviour of the fluctuations has
also been obtained in [12] for the position and momentum in a clustering equilibrium state.
If ρ 6= ρc the distribution of the fluctuations is jointly Gaussian; ifρ = ρc the distributions
are not Gaussian ifσ = 0. Finally, we mention that the limit3 ↑ R3 is taken by uniform
dilation of a unit volume domain31 of arbitrary shape containing the origin. The obtained
distributions depend explicitly on the shape of this domain.

2. The n-point truncated function

We consider an extremal translation invariant infinite-volume equilibrium grand canonical
stateω of the free Bose gas at inverse temperatureβ. It is a quasi-free state over the
algebra of canonical commutation relations (CCR), characterized by its one- and two-point
truncated functions given by

ωT(a+(x)) = ceiθ ωT(a(x)) = ce−iθ

ωT(a+(x), a+(x ′)) = ωT(a(x), a(x ′)) = 0
ωT(a+(x), a(x ′)) = rz(x − x ′)
ωT(a#(x1), . . . , a

#(xn)) = 0 ∀n > 3

wherea#(x) stands for eithera+(x) or a(x), and

rz(x) =
∞∑

n=1

zn

(2πβn)3/2
exp(−|x|2/2nβ). (2.1)

The critical densityρc is given byρc = r1(0) = (2πβ)−3/2g3/2(1) where the functiong3/2

is given byg3/2(z) = ∑∞
n=1 zn/n3/2. The quantityc in equation (2.1) is defined in terms of

the particle densityρ and critical densityρc by

c =
{

0 if ρ 6 ρc√
ρ − ρc if ρ > ρc

so thatc2 is the density of the condensate. The activityz is the unique solution of the
equationρ = (2πβ)−3/2g3/2(z), if ρ 6 ρc, andz = 1, if ρ > ρc.

We consider the fluctuations of one-particle observables of a general type, the
construction of which starts with the basic operatorsxτpσ acting on the one-particle space
L2(R3), wherexτ is the multiplication by the monomial (1.4) of degree|τ |, (Rx)τ = R|τ |xτ

for any R > 0, andpσ is defined in equation (1.5). With every such operator we associate
a sequence of local approximationsaR

σ,τ , which are self-adjoint operators onL2(R3):

aR
σ,τ = 1

2(fRxτpσ + pσfRxτ ). (2.2)
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HerefR is the multiplication by a realC∞
0 (R3) function defined as follows. Let31 ∈ R3

be a bounded connected domain of unit volume, containing the origin of coordinates, and
let for anyR > 0, χR be the indicator function of its uniform dilation:

3R = {x ∈ R3 : x/R ∈ 31}. (2.3)

Let f be any fixedC∞
0 (R3) function satisfyingf (x) > 0 and

∫
dxf (x) = 1, then

fR(x) =
∫

R3
dy χR(y)f (x − y). (2.4)

Considering these local approximations (2.2) is a matter of taking into account the influence
of boundary conditions, which are situated in the type of functionsf . The convergence of
the limits R → ∞ will be independent of the particular choice off .

We denote byAR
σ,τ the second-quantized form of theL2(R3) operatorsaR

σ,τ . For instance,
if one considers functions of one-particle positions only, thenσ = 0 andAR

0,τ is written
formally as

AR
0,τ =

∫
R3

dx fR(x)xτ a+(x)a(x). (2.5)

If one considers observables linear in momentum operators, then|σ | = ∑3
j=1 σ j = 1, say

σ i = δj,i , and

AR
j,τ = − 1

2i
∫

R3
dx fR(x)xτ [∂ja

+(x)a(x) − a+(x)∂ja(x)]. (2.6)

If |σ | > 1, then the corresponding derivatives should be applied toa+(x) anda(x) according
to a definite symmetrization rule, which is, however, of no relevance to the asymptotic
behaviour (R → ∞) of the expressions representing the fluctuations.

Let us now consider the truncated expectationωT (Ursell function) ofn operatorsAR
σk,τk

,
k = 1, . . . , n, in the extremal stateω. It has the general form

ωT(AR
σ1,τ1

, · · · , AR
σn,τn

) =
∑

γ1,...,γ2n

Kγ1,...,γ2n

∫
dx1 . . . dxn Iγ1,...,γ2n

(x1, . . . , xn)

n∏
k=1

fR(xk)x
τk

k .

(2.7)

Here the sum runs over sets of 2n multi-indices{γ1, . . . , γ2n}, such thatγ2k−1 + γ2k = σk,
k = 1, . . . , n, and

Iγ1,...,γ2n
(x1, . . . , xn) = ∂γ1

y1
. . . ∂γ2n

y2n
ωT(a+(y1)a(y2), . . . , a

+(y2n−1)a(y2n))

∣∣∣∣∣∣ y1=y2 =x1

···
y2n−1=y2n =xn

(2.8)

The sum overγ1, . . . , γ2n, with suitably chosen constantsKγ1,...,γ2n
, performs the necessary

symmetrization of the derivatives entering into the definition of the momentum operators,
see equation (2.6).

Due to the quasi-free property of the stateω, the distributions

ωT(a+(x1)a(x1), . . . , a
+(xn)a(xn)) (2.9)

can be expressed as a sum of terms which are products ofrz- and δ-functions. The
structure of the terms in this sum can be conveniently represented by subgraphs of the full
graphGn with verticesx1, . . . , xn and a distinguished vertexv. To every non-zero factor
ωT(a+(xk)a(xl)), respectivelyωT(a(xk)a

+(xl)), we put into correspondence an oriented
edge fromxk to xl , respectively fromxl to xk, if k 6= l, and a loop atxk, if k = l; to
every non-zero factorωT(a+(xk)) = c exp(+iθ), respectivelyωT(a(xk)) = c exp(−iθ), we
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put into correspondence an oriented edge fromxk to v, respectively fromv to xk. We
note thatc 6= 0 implies z = 1. By the definition of the truncated expectation, it contains
only terms which are represented by subgraphs ofGn, such that their restriction to the set
x1, . . . , xn is connected. Taking into account that there are exactly two edges incident with
each vertexxk, k = 1, . . . , n, one concludes that the subgraphs with the above properties
are oriented polygons which pass through all the verticesx1, . . . , xn. To each polygon
xπ(1), xπ(2), . . . , xπ(n), xπ(1), which does not pass throughv, there corresponds, depending
on the orientation, one of the following two terms in the expansion of (2.9):

ωT(a+(xπ(1)), a(xπ(2))) · · ·ωT(a+(xπ(n)), a(xπ(1)))

ωT(a(xπ(1)), a
+(xπ(2))) · · ·ωT(a(xπ(n)), a

+(xπ(1))) (2.10)

whereπ(·) is a permutation of the indices{1, 2, . . . , n}. If the vertex set of the polygon
containsv, then the corresponding term in the expansion of (2.9) is given by one of the
following two expressions,

c2ωT(a+(xπ(1)), a(xπ(2))) · · ·ωT(a+(xπ(n−1)), a(xπ(n)))

c2ωT(a(xπ(1)), a
+(xπ(2))) · · ·ωT(a(xπ(n−1)), a

+(xπ(n))) (2.11)

depending on the orientation. Next, we remark that every factor in the expressions (2.10)
and (2.11) contains onea+ and onea, so that

ωT(a+(xk), a(xl)) = rz(xk − xl)

ωT(a(xk), a
+(xl)) = rz(xl − xk) + δ(xl − xk). (2.12)

Therefore, every product of the form (2.10) or (2.11) generates a sum of terms in which the
factorsωT(a(xk), a

+(xl)) are replaced either byrz(xl − xk), or by δ(xl − xk). The sum of
monomials, in which all the factorsωT(a(xk), a

+(xl)) are replaced byrz(xl −xk) is referred
to as then-particle contribution toωT. More generally, ak-particle contribution to (2.10)
or (2.11) is called a term withk factorsrz(·) andn − k factorsδ(·).

Coming now to the structure ofIγ1,...,γ2n
(x1, . . . , xn), it becomes clear how the

derivatives on the right-hand side of equation (2.8) act on terms of the form (2.10) and
(2.11) with a given arrangement ofa+ and a. For example, the derivatives acting on
ωT(a+(y2k−1), a(y2l)) give rise to a factor

∂γ2k−1
y2k−1

∂γ2l

y2l
ωT(a+(y2k−1), a(y2l)) = (−1)|γ2l | (∂γ2k−1+γ2l rz

)
(xk − xl). (2.13)

In conclusion, then-particle contributions to a term of type (2.10) have the general form

±
n∏

k=1

(∂νk rz)(xπ(k) − xπ(k+1)) (2.14)

whereπ(n + 1) = π(1), andνk equals eitherγ2π(k)−1 + γ2π(k+1) or γ2π(k) + γ2π(k+1)−1. As
a consequence,

n∑
k=1

νk =
n∑

k=1

σk and 06 |νk| 6 |σπ(k)| + |σπ(k+1)|. (2.15)

In the k-particle contributions withk < n some of the factorsrz(·) in (2.14) are replaced
by δ(·). Then-particle contributions to a term of type (2.11) have the general form

±c2
n−1∏
k=1

(∂νk rz)(xπ(k) − xπ(k+1)) (2.16)

whereν1 = σπ(1), νn = σπ(n), and the remainingνk satisfy equation (2.15).
We consider explicitly the following two cases:
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(i) fluctuations of monomials in the components of the one-particle position operator,
see equation (2.5), for which the variance is

ωT(AR
0,τ , A

R
0,τ ) = ρ

∫
dx1 [fR(x1)x

τ
1 ]2

+
∫

dx1 dx2 fR(x1)x
τ
1fR(x2)x

τ
2

[
r2
z (x1 − x2) + 2c2rz(x1 − x2)

]
(2.17)

(ii) fluctuations of the observable which is linear in the momentum operator (2.6), with
variance given by

ωT(AR
j,τ , A

R
j,τ ) = − 1

4

∫
dx1 dx2 fR(x1)x

τ
1fR(x2)x

τ
2

×{−2[∂j rz(x1 − x2)]
2 + 2[rz(x1 − x2) + c2]∂2

j rz(x1 − x2)

−2∂j rz(x1 − x2)∂j δ(x1 − x2) + ∂2
j rz(x1 − x2)δ(x1 − x2)

+[rz(x1 − x2) + c2]∂2
j δ(x1 − x2)}. (2.18)

We do not explicitly consider the general case ofAR
σ,τ with |σ | > 1, because it does

not yield anything new (see below) but a very heavy notational burden.

3. Fluctuations in the normal phase

The normal phase atρ < ρc is characterized by the absence of condensate, i.e.c = 0 in
expression (2.1), and by the exponential decay of the two-point truncated functionrz(x) as
|x| → ∞. In this case we prove a rather general property.

Lemma 3.1. If ρ < ρc, then for alln > 2

lim
R→∞

R−3n/2−∑
k |τk |ωT(AR

σ1,τ1
, . . . , AR

σn,τn
) = 0. (3.1)

Proof. From (2.7) it follows that the expression on the left-hand side of equation (3.1) is
a finite sum of terms of the form

R−3n/2
∫

dx1 · · · dxn

n∏
k=1

fR(xk)(R
−1xk)

τk ∂νk rz(xk − xk+1) (3.2)

wherexn+1 = x1 and
∑

νk = ∑
σk, and we have analogous terms with some of the functions

rz replaced byδ-functions. Note that we have used the property(R−1xk)
τ = R−|τ |xτ

k . We
continue with the explicit treatment of expression (3.2), since the presence ofδ-functions
leads to trivial modifications of the argument. After the change of variables(x1, . . . , xn) →
(u1, . . . , un−1, y) with

uk = xk − xk+1 k = 1, . . . , n − 1 y = xn/R (3.3)

expression (3.2) becomes

R3−3n/2
∫

du1 · · · dun−1

n−1∏
k=1

∂νk rz(uk)∂
νnrz

( n−1∑
k=1

uk

)
×

∫
dy

n∏
k=1

fR

(
R

(
y + 1

R

n−1∑
l=k

ul

))(
y + 1

R

n−1∑
l=k

ul

)τk

. (3.4)

Note that the function

u ≡ (u1, . . . , un−1) →
n−1∏
k=1

∂νk rz(uk)∂
νnrz

( n−1∑
k=1

uk

)
(3.5)
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is integrable and, therefore, we may apply the theorem of dominated convergence to the
integral overu. For any fixedu it is clear that

lim
R→∞

n∏
k=1

fR

(
R

(
y + 1

R

n−1∑
l=k

ul

))(
y + 1

R

n−1∑
l=k

ul

)τk

= χ
31

(y)

n∏
k=1

yτk . (3.6)

Therefore, the limitR → ∞ of expression (3.4) equals zero for alln > 2. �

Remark 3.1. The statement of lemma 3.1 is independent of the parameters{σ1, . . . , σn}.
As can be seen from the proof, this is a consequence of the fact that in the normal phase
the integrability of the function (3.5) does not depend on the presence of the derivatives
∂νk , k = 1, . . . , n, with

∑
νk = ∑

σk.

Remark 3.2. From the proof it is clear that lemma 3.1 also holds when the monomialxτ is
replaced by a homogeneous functionh|τ |(x) of degree|τ | which is bounded for any finite|x|.
For example, it holds with|τ | = 0 for the local angle observableφ(x) = arctan(x(2)/x(1)).

Now, in order to prove that fluctuations do exist under the choice of the exponent
− 3

2n − ∑n
k=1 |τk| in lemma 3.1, we turn to the casen = 2 and show that the limiting

variance

lim
R→∞

R−3−2|τ |ωT(AR
σ,τ , A

R
σ,τ ) (3.7)

exists and is non-trivial. Since, as mentioned above, the choice of the parametersσ

is irrelevant for the exponent in the normal phase, we confine ourselves to the explicit
consideration of the two cases (2.5) and (2.6).

Lemma 3.2. If ρ < ρc, then the following non-trivial limits exist:

(i) lim
R→∞

R−3−2|τ |ωT(AR
0,τ , A

R
0,τ ) =

[ ∫
du r2

z (u) + ρ

] ∫
31

dv v2τ

(ii) lim
R→∞

R−3−2|τ |ωT(AR
j,τ , A

R
j,τ )

= 1
2

{ ∫
du [(∂j rz(u))2 − rz(u)∂2

j rz(u)] − 2∂2
j rz(0)

} ∫
31

dv v2τ .

Proof. First we consider the variance for a function of the position only, given by
equation (2.17) atc = 0:

ωT(AR
0,τ , A

R
0,τ ) = ρ

∫
dx1

(
fR(x1)x

τ
1

)2 +
∫

dx1 dx2 fR(x1)x
τ
1fR(x2)x

τ
2r2

z (x1 − x2). (3.8)

Since the limit

lim
R→∞

fR(Rx) = χ31(x) (3.9)

yields the indicator function of the unit-volume domain31, then

lim
R→∞

R−3−2τ ρ

∫
dx [fR(x)xτ ]2 = lim

R→∞
R−3ρ

∫
dx [fR(x)(R−1x)τ ]2 = ρ

∫
31

dy y2τ (3.10)

is the one-particle contribution in equation (3.8).
In the analysis of the two-point contribution one can use the dominated convergence

theorem and the fact that the functionx → r2
z (x) is integrable. Thus, by changing variables

u = x1 − x2, v = x2 and rescalingv → Rv, one obtains

lim
R→∞

R−3−2|τ |
∫

dx1 dx2 fR(x1)x
τ
1fR(x2)x

τ
2r2

z (x1 − x2)

∫
du r2

z (u)

∫
31

dv v2τ . (3.11)
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Next, the variance of the observable which is linear in the momentum operator is given
by equation (2.18) atc = 0:

ωT(AR
j,τ , A

R
j,τ ) = 1

2

∫
dx1 dx2 fR(x1)x

τ
1fR(x2)x

τ
2

×{[∂j rz(x1 − x2)]
2 − rz(x1 − x2)∂

2
j rz(x1 − x2) + ∂j rz(x1 − x2)∂j δ(x1 − x2)

− 1
2∂2

j rz(x1 − x2)δ(x1 − x2) − 1
2rz(x1 − x2)∂

2
j δ(x1 − x2)}. (3.12)

For the one-particle contribution,ω(1)
T (·, ·), after change of variables and integration by

parts, we obtain

ω
(1)
T (AR

j,τ , A
R
j,τ ) = 1

2

∫
du dv fR(v + u/2)(v + u/2)τ fR(v − u/2)(v − u/2)τ

× {
∂j rz(u)∂j δ(u) − 1

2∂2
j rz(u)δ(u) − 1

2rz(u)∂2
j δ(u)

}
= − ∂2

j rz(0)

∫
dv [fR(v)vτ ]2 + 1

4rz(0)

∫
dv {∂j [fR(v)vτ ]}2. (3.13)

Hence,

lim
R→∞

R−3−2|τ |ω(1)
T (AR

j,τ , A
R
j,τ ) = −∂2

j rz(0)

∫
31

dv v2τ . (3.14)

The two-particle contributionω(2)
T (·, ·), after change of variables, takes the form

ω
(2)
T (AR

j,τ , A
R
j,τ ) = 1

2

∫
du dv fR(v + u/2)(v + u/2)τ fR(v − u/2)(v − u/2)τ

×{[∂j rz(u)]2 − rz(u)∂2
j rz(u)}. (3.15)

Since the function in the braces is integrable, we rescale only the variablev → Rv, as a
result of which the right-hand side becomes

1
2R3+2|τ |

∫
du dv fR(R(v + u/2R))(v + u/2R)τfR(R(v − u/2R))(v − u/2R)τ

×{[∂j rz(u)]2 − rz(u)∂2
j rz(u)}. (3.16)

Thus we obtain

lim
R→∞

R−3−2|τ |ω(2)
T (AR

j,τ , A
R
j,τ ) = 1

2

∫
du {[∂j rz(u)]2 − rz(u)∂2

j rz(u)}
∫

31

dv v2τ . (3.17)

Equations (3.14) and (3.17) complete the proof of the lemma. �

We can now formulate the result for the characteristic functions of the considered
fluctuation operators.

Theorem 3.3. In the normal phase,ρ < ρc, the characteristic function of the fluctuation
operator

R−3/2−|τ |[AR
0,τ − ω(AR

0,τ )]

in the limit R → ∞ is given by the expression

lim
R→∞

ω
(
exp

{
iλR−3/2−|τ | [AR

0,τ − ω(AR
0,τ )

]}) = exp

{
− 1

2λ2

[ ∫
du r2

z (u) + ρ

] ∫
31

dv v2τ

}
(3.18)

and the characteristic function of the fluctuation operator

R−3/2−|τ | [AR
j,τ − ω(AR

j,τ )
]
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in the limit R → ∞ is given by the expression

lim
R→∞

ω
(
exp

{
iλR−3/2−|τ | [AR

j,τ − ω(AR
j,τ )

]})
= exp

{
− 1

4λ2

{ ∫
du [(∂j rz(u))2 − rz(u)∂2

j rz(u)] − 2∂2
j rz(0)

} ∫
31

dv v2τ

}
.

(3.19)

Proof. This follows straightforwardly from lemmas 3.1 and 3.2, and the well known
expansion of the characteristic function in terms of the truncated expectation values:

ω(eiλQ) = exp
∞∑

n=1

(iλ)n

n!
ωT(Q; . . . ; Q︸ ︷︷ ︸

n times

). �

Following the ideas of [4], we note that the above theorem proves the existence of the
limits

F(Aj,τ ) = lim
R→∞

R−3/2−|τ |[AR
j,τ − ω(AR

j,τ )] (3.20)

defined as non-commutative central limit operators acting on the GNS-space induced by the
distributions in the right-hand side of equations (3.18) and (3.19), which are states on the
algebra of fluctuation operatorsF(Aj,τ ).

It is interesting to remark that the algebra of fluctuation operators is Abelian in the case
of Aj,τ with τ ∈ N3. Indeed, for any suchτ andτ ′ one obviously has

[AR
0,τ , A

R
0,τ ′ ] = 0 (3.21)

already for finiteR. Consider next the commutator [AR
0,τ , A

R
j,0] which, up to boundary

terms, is either zero, whenτ j = 0, or has the formAR
0,τ ′ with τ ′i = τ i for i ∈ {1, 2, 3} \ {j}

andτ ′j = τ j − 1, whenτ j > 1. Consider the non-trivial case, when|τ ′| = |τ | − 1. Then
we obtain the commutator

[R−3/2−|τ |(AR
0,τ − ω(AR

0,τ )), R
−3/2(AR

j,0 − ω(AR
j,0))] = R−1(R−3−|τ ′|AR

0,τ ′).

On the basis of theorem 3.3, one takes the expectation value of the above equation in the
stateω, and passing to the limitR → ∞ obtains

[F(A0,τ ), F (Aj,0)] = lim
R→∞

R−1ω
(
R−3−|τ ′|AR

0,τ ′

)
= 0 (3.22)

since

lim
R→∞

ω
(
R−3−|τ ′|AR

0,τ ′

)
is bounded.

Remark 3.3. By using the same argument one can prove the commutativity of the algebra
of fluctuations in the critical and condensed phases, see sections 4 and 5. This means that
no quantum effects are visible on the level of one-particle fluctuations. This also means
that the characteristic function of a sum of two operators of the considered type equals
the product of the corresponding characteristic functions. In particular, if the distributions
of the fluctuations are Gaussian, as in the case of the normal phase, then they are jointly
Gaussian.

In conclusion we mention that the Gaussian distributions (3.18) and (3.19) show an
explicit shape dependence through the integral

∫
31

dv v2τ . Of course, for translation invariant
observables, i.e. forτ = 0, no shape dependence appears, as expected in a clustering state
(compare with the result for the critical regime). Space homogeneous quantities do not
show any boundary conditions dependence if one has exponential decay of the correlation
functions, as is the case in the normal phases.
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4. Critical fluctuations

At the critical pointρ = ρc(β) and the fugacityz = 1. In this case the functionr1(x), see
equation (2.1), can be written in the form

r1(x) =
∞∑

n=1

G(nβ, x) (4.1)

where

G(nβ, x) = 1

(2πβn)3/2
exp

(
− |x|2

2βn

)
. (4.2)

By comparing the above sum to the integral
∫ ∞

0 dt G(tβ, x) and using the fact that the
function t → G(tβ, x) has only one maximum att∗ = |x|2/3β, one obtains the following
lower and upper bounds onr1(x):

1

2πβ|x| −
(

3

2πe

)3/2 1

|x|3 6 r1(x) 6 1

2πβ|x| +
(

3

2πe

)3/2 1

|x|3 . (4.3)

Lemma 4.1. If ρ = ρc, z = 1, then
(i) for the position fluctuations, we have for alln > 2,

lim
R→∞

R−2n−n|τ |ωT(AR
0,τ , . . . , A

R
0,τ )

= n!

n(2πβ)n

∫
31

dx1 · · · dxn

xτ
1 · · · xτ

n

|x1 − x2| · · · |xn−1 − xn||xn − x1|
(ii) for the momentum fluctuations, we have for alln > 3,

lim
R→∞

R−3n/2ωT(AR
j,0, . . . , A

R
j,0) = 0

and forn = 2,

lim
R→∞

R−3ωT(AR
j,0, A

R
j,0) = 1

2

{ ∫
du [(∂j r1(u))2 − r1(u)∂2

j r1(u)] − 2∂2
j r1(0)

}
.

Proof. Becausec = 0, only the polygons which pass through the verticesx1, . . . , xn

will contribute to right-hand side of the general expression (2.7) for then-point truncated
function. Since each of then!/n oriented polygons has an identicaln-particle contribution,
and since each replacement of the functionr1(·) by a δ-function reduces the number of
integrations and, hence, the order of the term inR → ∞, we obtain

lim
R→∞

R−2n−n|τ |ωT(AR
0,τ , . . . , A

R
0,τ ) = (n − 1)! lim

R→∞

∫
dx1 · · · dxn

n∏
k=1

fR(Rxk)x
τ
k

×Rr1(R(x1 − x2)) · · ·Rr1(R(xn−1 − xn))Rr1(R(xn − x1))

= (n − 1)!

(2πβ)n

∫
31

dx1 · · ·
∫

31

dxn

xτ
1 · · · xτ

n

|x1 − x2| · · · |xn−1 − xn||xn − x1| . (4.4)

In deriving the last equality we have used the pointwise convergence

lim
R→∞

Rr1(Rx) = 1

2πβ|x| x 6= 0 (4.5)

which follows from the bounds (4.3). This proves (i).
From the proof it is clear that lemma 4.1 also holds if the monomialxτ is replaced by

a homogeneous functionh|τ |(x) of degree|τ | > 0 which is bounded for any finite|x|.
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Now we turn to the proof of statement (ii). The variance,n = 2, is given by expression
(3.12) at the critical fugacityz = 1. First we note that the one-particle contribution (3.13)
can be treated along the same lines yielding equation (3.14) atz = 1. The limit R → ∞
of the two-particle contribution (3.15) follows by the same argument as in the case of the
normal phase, see lemma 3.2, since the functionsu → [∂j r1(u)]2 and u → r1(u)∂2

j r1(u)

are integrable. This extends the result (ii) of lemma 3.2 to the critical fugacityz = 1.
For n > 3, from equations (2.7)–(2.10) we obtain

lim
R→∞

R−3n/2ωT(AR
j,0, . . . , A

R
j,0)

= Cn lim
R→∞

R−3n/2
∫

dx1 · · · dxn

n∏
k=1

[fR(xk)∂
νk

j r1(xk − xk+1)]

(4.6)

whereCn is a combinatorial coefficient,xn+1 = x1, 0 6 νk 6 2 and
∑n

k=1 νk = n. We have
taken into account that the terms with some of the functionsr1 replaced byδ-functions give
a lower-order contribution inR → ∞. Let us define the sets,

Sm = {(x1, . . . , xn) ∈ R3n: |xm − xm+1| = max
16k6n

|xk − xk+1|} m = 1, . . . , n (4.7)

so that∪n
m=1Sm = R3n. Obviously,

lim
R→∞

R−3n/2
∣∣ωT(AR

j,0, . . . , A
R
j,0)

∣∣
6 nCn lim

R→∞
R−3n/2 max′

ν1,...,νn

∫
Sn

dx1 · · · dxn

n∏
k=1

|fR(xk)∂
νk

j r1(xk − xk+1)| (4.8)

where the primed maximum is taken under the above-mentioned constraints onν1, . . . , νn.
Now we setxk − xk+1 = uk, k = 1, . . . , n, and in the integral overSn make the change of
variables(x1, . . . , xn) → (u1, . . . , un−1, y), where

xk = y +
n−1∑
l=k

uk 1 6 k 6 n − 1 xn = y. (4.9)

In the new variables the domain of integration becomes

Sn =
{
(u1, . . . , un−1) ∈ R3(n−1): |uk| 6

∣∣∣∣ n−1∑
l=1

ul

∣∣∣∣, k = 1, . . . , n − 1

}
× R3. (4.10)

For anyε > 0, denote byS>
n,ε the subset ofSn in which |u1| > ε, and byS6

n,ε the subset
of Sn in which |u1| 6 ε. Therefore, by choosingε such that the functionsu → |∂ν

j r1(u)|,
with j = 1, 2, 3 andν = 1, 2, are monotonically decreasing for all|u| > ε, in the integral
over S>

n,ε one can use the inequality(j = 1, 2, 3)∣∣∣∣∂ν
j r1

(
−

n−1∑
k=1

uk

)∣∣∣∣ 6 |∂ν
j r1(u1)| ν = 0, 1, 2, |u1| > ε. (4.11)

Next, by extending the domain of integrationS>
n,ε, and taking into account that|fR(x)| 6 1

for all x ∈ R3, one obtains the upper bound

lim
R→∞

R−3n/2
∫

S>
n,ε

dx1 · · · dxn

n∏
k=1

|fR(xk)∂
νk

j r1(xk − xk+1)|

6 lim
R→∞

R−3n/2
∫

B(ε,qR)

du1 |∂ν1
j r1(u1)|

∣∣∣∣∂νn

j r1

(
u1

n − 1

)∣∣∣∣ ∫ 3

R
dy |fR(y)|
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×
n−1∏
k=2

∫
B(qR)

duk |∂νk

j r1(uk)| (4.12)

where

B(ε, R) = {u ∈ R3: ε 6 |u| 6 R} B(R) ≡ B(0, R) (4.13)

andq is any number larger than 2diam31. In the integral overS6
n,ε one can use the upper

bound

|∂ν
j r1(u1)| 6 max

ν=0,1,2
sup
u∈R3

|∂ν
j r1(u)| ≡ M (4.14)

and, again by extending the domain of integration, one obtains in the limitR → ∞,

lim
R→∞

R−3n/2
∫

S
6
n,ε

dx1 · · · dxn

n∏
k=1

|fR(xk)∂
νk

j r1(xk − xk+1)| 6 ε3(n − 1)3|B(1)|M2

× lim
R→∞

R−3n/2
∫

R3
dy |fR(y)|

n−1∏
k=2

∫
B(qR)

duk|∂νk

j r1(uk)|. (4.15)

Obviously, if the right-hand side of equation (4.12) vanishes, then (4.15) vanishes too.
Therefore, it suffices to consider the limit in (4.12). For the integral overy one obtains
after rescalingy → Ry

lim
R→∞

R−3
∫

R3
dy |fR(y)| = |31| = 1. (4.16)

In the integrals overuk, k = 1, . . . , n − 1 we take into account the existence of the limits

lim
R→∞

R2∂j r1(Ru) = − uj

2πβ|u|3 lim
R→∞

R3∂2
j r1(Ru) = 3(uj )2 − |u|2

2πβ|u|5 ∀u 6= 0.

(4.17)

Therefore, asR → ∞,∫
B(ε,qR)

du1 |∂ν1
j r1(u1)|

∣∣∣∣∂νn

j r1

(
u1

n − 1

)∣∣∣∣ =


O(R) ν1 + νn = 0

O(logR) ν1 + νn = 1

O(1) ν1 + νn > 2.

(4.18)

Similarly, for k = 2, . . . , n − 1,∫
B(qR)

duk |∂νk

j r1(uk)| 6 Mε3|B(1)| +
∫

B(ε,qR)

du |∂νk

j r1(u)| =
{

O(R2−νk ) νk = 0, 1

O(logR) νk = 2.
(4.19)

From (4.16), (4.18) and (4.19) it follows that the right-hand side of equation (4.12) attains
its highest order inR, namely O(R1−n/2), when νk = 1, k = 1, . . . , n, which yields the
proof of statement (ii) and the lemma. �

Theorem 4.1. The position fluctuations at criticality are non-Gaussian; the characteristic
function of the fluctuation operator

R−2−|τ |[AR
0,τ − ω(AR

0,τ )]

in the limit R → ∞ is given by the expression

lim
R→∞

ω(exp{iλR−2−|τ |[AR
0,τ − ω(AR

0,τ )]}) = 1 + tr

{
− iλKτ

2πβ
− log

(
1 − iλKτ

2πβ

) }
(4.20)
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whereKτ is the operator defined by

(Kτ ψ)(x) :=
∫

31

dy
yτ

|x − y|ψ(y) (4.21)

for all ψ ∈ L2(R3).

Proof. The proof follows from equation (4.4), the fact thatK2
τ is trace-class and the upper

bound

| tr Kn
τ | 6 (tr K2

τ )‖Kτ‖n−2 ∀n > 2 (4.22)

where

‖Kτ‖ 6
(

sup
x

∫
31

dy
y2τ

|x − y|2
)1/2

< ∞ (4.23)

and‖Kτ‖ is theL2-norm of Kτ . �

Remark 4.1. Theorem 4.1 holds also for fluctuation operators in which the monomialxτ

is replaced by a homogeneous functionh|τ |(x) of degree|τ | > 0 which is bounded for
any finite |x|. With the corresponding change in the definition (4.21) of the operatorKτ ,
the above result includes, as particular cases, the critical fluctuations of the density and the
angle observables. The non-Gaussian distribution of these fluctuations and the exponent
δ = 1

6 + |τ |/3 have not been computed before, not even for the density|τ | = 0. Note
also that the dependence on the shape of the unit volume31 is much more inherent in the
distribution for the critical phase, than for the normal one.

5. Fluctuations in the condensed phase

For anyβ > 0 and densities larger than the critical one,ρ > ρc(β), one hasz = 1 and
ρ = c2 + ρc, wherec2 > 0 is the condensate density,ρc = r1(0), with r1(x) given by
expressions (4.1)–(4.2). Note that the properties of the functionx → r1(x), which have
been used in section 4, are qualitatively the same for all finiteβ > 0.

Lemma 5.1. If ρ > ρc, z = 1, then
(i) for the position fluctuations, we have for alln > 2,

lim
R→∞

R−5n/2−n|τ |ωT(AR
0,τ , . . . , A

R
0,τ ) = 0

and forn = 2,

lim
R→∞

R−5−2|τ |ωT(AR
0,τ , A

R
0,τ ) = c2

πβ

∫
31

dx1

∫
31

dx2
xτ

1xτ
2

|x1 − x2|
(ii) for the momentum fluctuations, we have for alln > 3,

lim
R→∞

R−3n/2ωT(AR
j,0, . . . , A

R
j,0) = 0

and forn = 2,

lim
R→∞

R−3ωT(AR
j,0, A

R
j,0) = 1

2

{ ∫
du [(∂j r1(u))2 − r1(u)∂2

j r1(u)] − 2∂2
j r1(0)

}
+ c2

(2π)3β

∫
dk

(
kj

|k|
)2 ∣∣∣∣∫

31

dx eikx

∣∣∣∣2

.
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Proof. Note that then-point truncated function for the position fluctuations in the
condensed phase is divided by a higher power ofR, namelyR5n/2+n|τ |, compared toR2n+n|τ |

for the critical fluctuations considered in lemma 4.1. Therefore, all the contributions which
are not proportional to the condensate densityc2 will vanish in the limitR → ∞. It remains
to consider then-particle contribution from then! oriented polygons which pass through all
the verticesx1, . . . , xn andv:

lim
R→∞

R−5n/2−n|τ |ωT(AR
0,τ , . . . , A

R
0,τ ) = n!c2 lim

R→∞
R−n/2+1

∫
dx1 · · · dxn

n∏
k=1

fR(Rxk)x
τ
k

×Rr1(R(x1 − x2)) · · ·Rr1(R(xn−1 − xn)) = 0 (5.1)

for all n > 3, due to the limit (4.5). Since thek-particle contributions withk < n are of
lower order inR, they vanish too. The expression for the variance follows by the above
argument forn = 2. This proves statement (i).

The proof of statement (ii), in the part concerningn > 3, goes along the same lines as for
the position fluctuations, by using the estimates of equation (4.19). Finally, for computing
the variance of the momentum fluctuations, we turn back to the general expression (2.18).
In addition to the terms evaluated in lemma 4.1 (ii), we have to consider

lim
R→∞

R−3ωT(AR
j,0, A

R
j,0) = − 1

2c2 lim
R→∞

R−3
∫

dx1

∫
dx2 fR(x1)fR(x2)

× [
∂2
j r1(x1 − x2) + 1

2∂2
j δ(x1 − x2)

]
. (5.2)

The one-particle term, containing theδ-function, is readily shown to give no contribution.
By using Fourier transforms and rescaling the integration variable, the two-particle term in
equation (5.2) can be written as

c2

2(2π)3
lim

R→∞

∫
dk

∣∣∣∣R−3f̂R

(
k

R

)∣∣∣∣2

ϕj

(
k

R

)
(5.3)

wheref̂R(k) is the Fourier transform offR(x) and

ϕj (k) = (kj )2

exp(βk2/2) − 1
. (5.4)

Clearly,ϕj is a positive bounded function, 06 ϕj (k) 6 2/β, and pointwise

lim
R→∞

ϕj

(
k

R

)
= 2

β

(
kj

|k|
)2

. (5.5)

On the other hand,

lim
R→∞

R−3f̂R

(
k

R

)
= lim

R→∞

∫
dx fR(Rx)eikx =

∫
31

dx eikx ∈ L2(R3). (5.6)

Hence one easily derives (ii) forn = 2. �
Finally, we have

Theorem 5.2. In the condensed phase,ρ > ρc, the fluctuations of the position and
momentum observables are Gaussian, with variances given by lemma 5.1.

Remark 5.1. All the fluctuations of the studied type are Gaussian in the condensed phase.
This might look to be in contradiction with the results of [8] concerning the fluctuations
of the density of particles at the lowest energy level. However, the latter are fluctuations
of the square of the Bose field, rather than of one-particle observables. Therefore, the
corresponding distributions can be totally different.
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Remark 5.2. From remark 3.3 it is clear that in the condensed phase there are also
no quantum effects visible at the level of one-particle fluctuations, in the sense that all
fluctuation operators of the considered type commute pairwise.

6. Discussion

Our study of a general type of one-particle fluctuations in the ideal Bose gas complements
the study of the field fluctuations given in [5]. We have obtained the volume scale, given by
the normalization exponentδ, at which these fluctuations appear in the three distinct phases
of the free Bose gas: normal, critical and condensed. Our results include as particular
cases the fluctuations of the particle density, of position, angle, momentum and angular
momentum. We have shown that momentum fluctuations are always normal Gaussian, even
at the critical point. One of the remarkable results is the non-Gaussian distribution explicitly
obtained for the critical fluctuations of the position type observables, including the particle
density. Furthermore, it turns out that all the limit fluctuation operators commute pairwise
and, therefore, no quantum effects are visible at the level of one-particle fluctuations, except
in the individual distributions.

Although the validity of the explicit results obtained here is limited to the ideal Bose
gas, the arguments used in the important lemmas 3.1 and 4.1 are based on rather general
features, such as the integrability of the two-point function and the behaviour of the truncated
n-point functions at infinity. These properties can be used in a study of the fluctuations in
interacting Bose systems and, in particular, in various models of the general phenomenon
of Bose–Einstein condensation (see e.g. [12]).

There still remain some open problems, even in the case of the free Bose gas. First of
all, there is the problem of the fluctuations in the ground state. One way of approaching the
ground state is by taking the limit of temperaturesT tending to zero. A quick inspection
reveals that the resulting fluctuations may depend on the particular way in whichT tends
to zero, for example, by settingT ∼ V −α, with someα > 0. It is not clear whether the
normalization exponent for the fluctuationsδ is independent of the parameterα. Another
open question is whether the algebra of fluctuation operators will remain Abelian in the limit
T → 0. Of course, the fluctuations of two- and higher-particle observables still remain to be
studied. According to physical intuition, it is to be expected that higher-particle fluctuations
behave more normally than lower-particle ones. Can one verify this on models, or can one
find a mathematically rigorous argument for its general validity?
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